Diagram to determine pipe dia. and related pressure drop

To get a rough idea of the pressure drop sustained in pipes and piping or plumbing units (e.g. elbows, cross-overs, valves, etc.) use the diagram overleaf. This chart is based on 1 m length pipes and sepc. gravity of $1 \mathrm{~kg} / \mathrm{dm}^{3}$. For different parameters use the conversionformular.

1. Applications

Taketherequired delivery $Q\left(\mathrm{~m}^{3} / \mathrm{h}\right)$ and the hypothetical flow rate $w(\mathrm{~m} / \mathrm{s})$ to determine the pipe dia. $d(\mathrm{~mm})$. (Usually between $0.5 \ldots 0.8 \mathrm{~m} / \mathrm{s}$ for dosing pumps and $2 . . .4 \mathrm{~m} / \mathrm{s}$ for constant flow, e.g. for centrifugal pumps).

2. Pressure drop through fittings

Determine and add the drag coefficient ξ for various controls, elbows, etc. installed in the pipe system. Depending on the previously foung/selected flow rate $\mathrm{w}(\mathrm{m} / \mathrm{s})$ the sum total $\Sigma \xi$ will give the pressure drop for Δp_{A} (mbar).
For components bulit or fitted in the pipe system and not featured in the diagram use ξ-values.

3. Pressure drop through pipes

Determine the pressure drop $\Delta \mathrm{p}_{\mathrm{R} 1}$ (mbar) per metre piping as a function of the flow rate $w(\mathrm{~m} / \mathrm{s})$ and the previously established pipe dia. d (mm).
To determine the overall pressure drop Δp_{R} multiply the value $\Delta p_{R 1}$ by the number of metres of the piep length.

$$
\Delta p_{R}=\Delta p_{R 1} \times \text { pipe length (m) }
$$

The pipe was assumed to have a friction or roughness factor of 0.15 mm . This value applies for smooth pipes in process engineering.

4. Total pressure drop

The overall accepted pressure drop is the sum total of the pipe and component-governed losses.

$$
\Delta \mathrm{p}_{\text {total }}=\Delta \mathrm{p}_{\mathrm{R}}+\Delta \mathrm{p}_{\mathrm{A}}
$$

5. Specific gravity correction

Pressure drop for liquids with a spec. gravity of $\neq 1 \mathrm{~kg} / \mathrm{dm}^{3}$ can be calculated by multiplying the $\Delta \mathrm{p}$ values found from the diagram by that spec. gravity:

$$
\Delta \mathrm{p}=\Delta \mathrm{p}_{\text {total }} \times \rho
$$

6. Example

Deliver $0.4 \mathrm{~m}^{3} / \mathrm{h}$ saline solution $(\rho=1.18)$ through the following plant:
Metering pump; 0.5 m PVC tubing; shut-off valve (to DIN); 1 m PVC tubing; solenoid valve; flow detector; elbow; flow rate meter; elbow; T piece; 4m PVCtubing.
Find pipe dia. and pressure drop.

Solution:

The pipe diameter is determined to be 16 mm at a flow rate of $0.55 \mathrm{~m} / \mathrm{s}$.
The sum of the ξ-values gives us:
DINstandardvalve 3.9
Solenoid valve 6.0
Flow detector 5.8
Elbow 0.5
Flow meter $\quad 6.5$
Elbow 0.5
TPiece 1.3
$\Sigma \xi=24,5$
For $w 0.55 \mathrm{~m} / \mathrm{s}$, and $\xi=24.5$ the pressure drop in the instrumentation can be found as $\Delta p_{A}=40 \mathrm{mbar}$.
Furthermore, at a dia. $=16 \mathrm{~mm}$, the pressure drop in a 1 m long pipe is $\Delta \mathrm{p}_{\mathrm{R} 1}=3.5 \mathrm{mbar}$.
Thus, the pressure drop to be expected in a 4.5 m long pipe system is $\Delta p_{R}=4.5 \times 3.5=15.8 \mathrm{mbar}$. The overall pressure drop will be the sum total of both these values which has to be multiplied by the ρ :

$$
\begin{gathered}
\Delta p_{\text {totat }}=40+15.8=55.8 \mathrm{mbar} \\
\Delta p=\Delta p_{\text {total }} \times \rho=55.8 \times 1.18=65.8 \mathrm{mbar}
\end{gathered}
$$

Instrument	ξ
Ball cock	0.6
Angle seat valve	0.6
Shut-off valve to DIN	3.9
L or T-port valve	3.0
Solenoid valve	6.0
Relief valve	6.0
Flap valve or tapered restrictor	5.8
Floating body/flow-through flow meter	6.5

Elbow		r/d	1	2		4	6	10
		ξ	0.51	0.		0.23	0.18	0.2
Bushes/sleeves, restrictors, screwed joints	$d 1_{7}^{J} \nabla_{\Gamma}^{l} d$	d/d	0.1	0.3	0.5	0.6	0.8	0.9
		ξ	0.45	0.42	0.38	0.3	0.17	0.09
Bend (sharp edge)		α	10	15	30	45	60	90
		ξ	0.04	0.06	0.15	0.3	0.6	1.2

Velocity w (m/s)

